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Abstract

　It　is　well　known　that　pulmonary　ventilation　increase　abruptly　immediately　after

submaximal　exercise　for　10～20　sec（phase　I）。　Then　there　are　a　brief　plateau　and

ventilation　increases　slowly　with　time　constant　60～70　sec／phase　II）and　reaches　a　new

steady　state（phase　III＞within　3～4　min。　These　changes　in　pulmo脇ry　ventilation

during　physical　exercise　in　man　are　termed　Phase　I，　Phase　II　and　Phase　III，　as　first

defined　by　Whipp〈1977）．　It　has　hitherto　been　reported　that　physiological　background

（mechanisms）of　phase　I　response　cannot　be　explained　by　humoral　agents　because　of

delay　in　transport、　At　present，　the　neurogenic　factors　of　phase　I　are　classified　largely

as　central　and　peripheral　stimuli，　or　as　both．

要約

　運動を開始と同時に換気量は10～20秒間かけて急増、一旦プラトーに達し、その後2～3分

の間指数関数的に増加し．4～5分で定常状態に至り、運動を中止すると換気量は急減し、その

後徐々に減少して安静レベルに戻るというそれぞれ3相の変化をすることはよく知られた事実で

ある。Whipp（1977）は、これらをPhase　I、　Phase　II、　Phase　IIIと名づけた。運動開始1呼

吸目から観察される換気量のステップ状の急増（Phase　Dの生理学的背景（メカニズム）は、

化学的要因ではなく主として神経的要因であろうと考えられている。現在、Phase　Iの神経的要

因として中枢性ドライブ、末梢性ドライブおよびその両ドライブが挙げられている。
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iNTRODUCTiON

  Akhough it is we}1 known that pulmoxxary venti}atioxx ixxcrease abruptly immediately

after exercise, the ventilatory response to svkbmaximal exercise is divided into the three

phases (Wasserman et al. X977; Whipp X981; Eldridge and Waldrop X991) ; the first phase

(Phase I), at the onset of exercise, vksvkal}y occvkrs with the first breath (Dejovkrs, 1964;

D'ange}o and Torrelli, 197X; Jensen et al. 197X; Ward X979; Eldridge and Wa}drop 199X).

Then there is a brief p}ateau aitd ventilation increases s}ow}y with time constaxxt of 60

- 70 sec (Phase II) axxd reaches a new steady state (Phase III) within 3 - 4 min. On the

other haitd, a hasty decrement in ventilation can be observed immediate}y after exercise,

fol}owed by another brief plateau and then a decrease that is more or }ess exponentia}

ixx form, until a new steady state levei is reached near the initial resting ventilation as

showxx in Figvgre X.
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  Fig#re ff Ideaiized representatiolt of ventilatory response during moderate exercise. There is a

  fast respomse at onset (phase 1), fo}lowed by a brief plateau, the a s}ow component rising over

  several minutes (phase 2) to the steady state (phase 3). Following offset of exercise, a rapid

  decrease (phase IR) is fo}lowed by altother brief plateau altd then by a slowly dec}ilting

  ventilation (phase 2R> to the new steady state (phase 3R). (Eidridge and Waidrop, 1991>

   The transitioxx from rest to }ight or moderate ixxtensity exercise is typically

accompanied by an abrvgpt step-like increment ixx ventilation at the first exercise breath.

in general, the initial rapid increase ixx pu}monary ventilation appearing at the onset of

exercise is termed Phase I, as first defined by Whipp (1977). This phase I is observed

during itot oniy voluntary exercise axxd passive movement, bvgt also during e}ectrically

induced muscle contraction. However, the responses at the onset of exercise are variable

ixx magxxitvgde, i.e., severa} authors performed a bicycie work from a backgrovkxxd of light

and mild exercises (Casaburi et al. X978; Whipp et a}. 1982; Browman and Wigertz X971)
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or from rest in svgpine (Karlsson et al. X975; Weiler-Ravel} et a}. X982) leads to a more

gradvkal rise in ventilation. in addition, ait abrvgpt changes ixx vexxti}atioxx is observed in

most but not all subjects (Craigg et a}. 1963). It has hitherto been considered that phase

I is influenced mainly by heredity axxd enviroxxment. Furthermore, the venti}atory

responses at the onset of exercise seems to be variab}e ixx magnitvgde. That is, the phase

I is inf}vgenced by various factors, svkch as posture (Karlson et al. 1975; Weiler-Raveli et

al. 1982; Miyamura et al. 200X), exercise frequency (Casey et al. X987; Kelsey and Duffin

1992), exercise }imb (Ishida et a}. 1994), age (Sato et al. 2000; Ishida et al. 2000) aitd

physical training (Miyamura et a}. 1997; Sato et a}. 2004) as shown in Fig. 2.

  Nevertheless many irwestigators have pvkrsvked the mechanisms of this phase I

response, and their opinions as to its nature are stil} a matter of dispvgte. Since the

changes ixx venti}atioxx are so rapid dvkrixxg the transitioxx from rest to exercise, phase I

response caxxnot be explained by humoral agents because of de}ay in transport. in other

PhaseI

Hereditaryfactor Environmentalfactor

Exercisemede(voluntaryexercise,passivemevementetc)
Exerciseintensity(highintensity,moderateintensity,Iowintensityetc)

Exercisefrequency(highfrequency,lowfrequencyetc)

Exerciseposture(sittingposition,supinepositionetc)

Exerciselimb(lowerlimb,upperlimb,bothlimb,onelimbetc)

AGETRAININGSEXDISEASE
  Figewe 2 Various factors influeltce on venti}atory respoltse at the oltset of muscular exercise.

words, it could be variable to clarify the neural control of exercise hyperpnea by

inquiring ixxto the mechanism of phase I, even if it is a small qvgantity. At present, the

causa} factors of phase I are classified largely into three, i.e., central (descending) axxd

peripheral (ascending) neurogenic stimu}i, or both . This short review wili focus oxx the

respiratory control at the onset of exercise in heakhy men based mainly on the data

obtained ixx ovkr experiments.
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i. CEMRAL COMMAND

  The mechanisms of exercise hyperpnea, particularly of its early stage (2-3 initia}

breaths or phase I), have been axxd still are a matter for debate. In 1888, Zvgntz aitd

Geppert described that the hyperpnea could be accounted for by arterial gas levels in the

neura} center and postvk}ated the foilowixxg: the brain above the primary respiratory

coxxtrol regions in the medu}la and pons produces a command sigxxal capable of driving

not oniy }ocomotion bvgt also respiration. Krogh and Lindhard (1913) have observed rapid

increment in both tidal volume axxd respiratory frequency immediately after bicyc}e

exercise. They also observed dyspnea or iow venti}atory response if the alveo}ar carboit

dioxide tensions was reduced by volvgntary hyperventi}atioxx before exercise. Since the

increase of hvkmoral factors svkch as C02 and }actic acid yield in the workixxg muscie,

they proposed that the rapid increase in ventilation may be due to the irradiation of

impvklses from the motor cortex to respiratory center. in addition, Morikawa et ai.

(1989) have investigated the circulatory axxd respiratory drives in the early phase of

vo}vgntary aitd passive exercise in heakhy subjects and patients with traumatic spixxai
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                                          g  Figure 3 Mean chaitges of minute ventiiatioit (VE> and respiratory frequency (fR) during
  imagined physica} exercise (W), visualizing }etter ([ ]) and the task with sounds of the treadmi}1

  only (O) in the ath}ete group (left panel) and lton-athlete grouep (right pane1), respectively.

  (Wuyam et a}. 1995)
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                                                                              mpcord transection. They found that, in the heakhy subjects, pulmoxxary ventilation (VE)

                                               eeincreased by 30% in passive movement, whereas VE ixx the patients did itot chaitge

                                                    opsignificantly. However, it was interesting to note that VE ixxcreased significantly when

the patients make a great effort to perform the exercise consciovksly. More recently,

imaged exercise produced an increase in ventilation especially in the athlete; pulmonary

venti}atioxx increases abovkt 20% in the athlete grovgp as compared with resting leve}, bvkt

not in the vgntrained group (Fig. 3). Thomtoxx et al. (1999) also observed that resting

ventiiatioit increased twice when the athlete imaged the exercise. These results suggest

that ventilatory response to the onset of exercise is to some extent re}ated to the higher

ceitter actwlty.

   On the other haxxd, Eldridge et al. (198X) and Di Marco et al. (X983) stvgdied the

relationships between respiratioxx aitd exercise (iocomotion) in anesthetized cats with
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                  recordings. (b) Example of locomotiolt induced by e}ectrical

              locomotor regiolt. (E}dridge et al. 1981)
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intact brains axxd unanesthetized decorticated (hypothalamic) or decerebrated

(mesencephalic) cats. They showed that hypothalamic stimvgiation elicited both

locomotioxx and increased respiration; the magnitvgde of the integrated respiratory

outpvgt is iinearly reiated to the magnitude of the induced locomotor activity (Fig. 4).

From these results, they svgggested that command signa}s emanating from the

hypothaiamus provide the primary drive for changes of respiration dvgring exercise.

They also observed, however, that within the first one or two walking steps of

spontaneovks locomotor activity, the rate of rise of phrexxic activity ixxcreased s}ightly

while peak phrenic activity remained relatively constant; peak internal intercostal

activity increased marked}y whi}e peak exterital activity and end-tidai carboxx dioxide

partial pressvgre (PETC02) decreased which were xxot observed ixx norma} walking. In

addition, a few ixxvestigators (Asmussen et al. 1943; Adams et a}. 1984a; Adams et a}.

X984b; Brice et a}. 1988) claimed that exercise hyperpnea caxx occvgr in the absence of

activatioit of the svgb-hypothalamic iocomotor center.

ii. maRiPl-imeRAL RffvaX

 i) STiMVLVS MOM WHee CAROTiD BODY

  Nerve endings located in the carotid bodies are known to be stimulated by an

increase ixx C02 pressure (PaC02) and hydrogen ions (H+) and by a decrease in 02

pressvgre (Pa02) in the arterial blood. It is possible to assume that the activatioxx of the

carotid body by chaitges in biood gases or pH might expiain the increased ventiiatioit

observed durixxg exercise. However, an unreso}ved prob}em is whether the amplitude of

the initiai ventilatory response at the onset of exercise may be affected by chemicai

stimvgli, such as hypoxia, hypocapnia or hypercapnia. According to Dejours et a}. (1960) the

eariy hyperventi}atory response to exercise is not affected by chaitges of inspired C02

pressure (PIC02) and 02 pressvgre (PI02). These resvgks were considered as a evidence

that phase I is xxevgrogenic aitd that there are no ixxteractioxxs between nevgrogenic aitd

chemical stimu}i. And this consideration was developed into the rational basis for the

we}}-known neuro-hvgmorai theory of venti}atory control of exercise. Simi}ar data were

obtained later by Cvgnningham et a}. (X966) whose conclusion was that chemical inputs

do not interact immediateiy with nevgral stimuli, either centra}ly or peripheraily. By

contrast, Asmussen (X973) fovgnd that in the presence of chemica} stimvgli (both hypoxia
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and hypercapnia), the lst phase neurogenic ventilatory compoxxent at the onset of

exercise was increased. In additioit, Springer et a}. (1989) reported that in both aduks

and children, breathing hypoxic mixtures (FI02==O.X5) reduces phase I ventilatory

response at exercise, while Nakazono and Miyamoto (1987) noted that hypoxia indvkces

               opan overshoot of VE for 20-30 secoxkds after exercise oxuset.
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     knspiratory respoltse in transition from rest to bicyc}e exercise with

  ltormoxic altd hypoxic conditions. (Miyamura et al. 1990)

      examples of breath-by-breath inspiratory ventilatory response

      when the subject performed 50 watt rectangular }oads on a

    nermoxic (FI02=O.21%) and hypoxic (FI02=-O.11) conditions.

          op
  volume (VI) increased immediately in response to the exercise

                                                  ge      were obtained ixx expiratory minvkte ventilatioxx (VE), with a

       experimental conditions. From Fig. 6, it appears that the

    sigxxificant}y higher in hypoxia thaxx in itormoxia. However, no

            op mp    exercise VI and delta VI which are calculated as the differences
                          '
       first axxd secoitd breath after the oitset of exercise aitd the

preceding exercise, were fouxxd between hypoxia and normoxia. These

  different work ioads, i.e., ito statistica} differences ixx the exercise

   fouxxd between hypoxia axxd xxormoxia both in 30 axxd 120 watts

      }actate leveis were xxot increased by exercise in both itormoxia

    (Miyamura et al. 1992b).

                                ge     observed that time constant of VE is shorter with a backgrovkxxd

       (1989) determined the time constaxxt of pulmoxxary ventilation

 bicycle exercise with constant peda}ing frequency of 60rpm uxxder

       normoxic (FI02=O.2X) conditions. They found that phase I
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response decreased significant}y durixxg hypoxia in both children and advgks as compared

with the case for xxormoxia. The possible reasons for their specific findings remained

obscure. However, whether or not phase I response is affected by hypoxia seems to be

a matter of definitioit or length of dvgration of the phase I defined by the individua}

author. Therefore, Griffiths et al. and Springer et al. examined the effect of hypoxia on

the phase I ixx terms of time constant estimated by fitting the data to the exponentiai

         as
model or VE at 20 s expressed as percent change from resting to steady state leve}.

Afterwards, phase I response is considered to last various}y for 10 - 15 s (Whipp, 1981),

15 s (Wasserman et a}. X986; Grucza et a}. X990; Grassi et a}. X993), 15-20s (Springer et

al. 1989; Masuda et a}. 1988), and 20 s (Linxxarsson 1974; Cvgmmixx et a}. 1986) among

different ixxvestigators and still defined as the period where carbon dioxide axxd oxygen

pressvkres in the mixed venous biood are maixxtained at the restixxg leve}. Since some

svgbjects have }ow respiratory freqvgency (10 - X2 breaths/min), we have chosen the phase

I response to be defined as the rapid chaxxge in ventilation occurring within 10 - 15 s

(for 2 or 3 breaths), in which chemical svgbstances may have not reached the peripheral

chemoreceptors. According to this definition, we have evalvkated the ventiiatory response

                          op mpat the onset of exercise (AVD. As described previous}y, AVI was not affected by

hypocapnic hypoxia at the work rates of 30, 50 and 120 watts. These findings suggest

that the nevgrogenic ventilatory drive at the onset of submaximal exercise at a work
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}oad below the subject's axxaerobic threshold may be independent of inspired 02 pressure

(PI02)e

2) CARDIODYNAMiC TmeORY

  In 1974, Wasserman axxd co}}eagvges (Jones et ai. 1982; Weissmaxx et al. 1982; Ward et

al. X983; Streme} and Rayne 1983) have proposed the so-called cardiodynamic theory

because ventilation increased pari passvg with axx increase ixx cardiac ovgtpvkt immediately

after exercise. Cummin et al. (X986) described that the hypothesis of cardiodyxxamic

                                                          ee @hyperpnea considers a possib}e effect of increasixxg cardiac ovgtput (Q) on ventilation (VE),

                   op mpsixxce a tendency for VE and Q responses was biphasic with axx initial rise followed by

a s}ight fa}1 at the 14 s mark, aitd a subseqvgent rise, at al} work ioads of bicyc}e

ergometer. However, Miyamoto et al. (X982) found that the magnititvgde of the initial

                         ig ee eeresponse is much greater ixx VE than Q, i.e., up to the first 5 s, VE increased 56% of its

                    opresting value, while Qincreased by on}y 14%. (Fig.7). They conclvgded that the

                     4.50
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cardiodyxxamic process could be ru}ed out as the origin of the initial venti}atory

response, and instead, other nevkrogenic mechanisms mediated either centra}}y or

peripheral}y, should be coxxsidered since a svgdden increase in ventilation was observed

immediate}y after the onset of passive pedaling whereas cardiac ovgtpvkt increased only

gradvgally (Miyamoto et al. X988). Miyamoto's coxxclusions coxxcerning the cardiodyxxamic

theory have been supported by several avkthors (Grvgcza et a}. 1990; Adams et ai. 1987;

Fordyce et a}. 1982; Coxxcu 1988; Baxxner et al. X988; Pokoroski et al. X990). Recent

findings made by simukaneovgs measurements of cardiac outpvgt and pulmomary

ventilation at the onset of exercise are strongly agaixxst the concept that vexxti}atioxx ixx

phase I is cavksaliy liked to right ventricvgiar outpvgt or right ventricvklar work (Ishida et

al. 1993), while cardiodynamic theory may be valid in the latter of phase I or phase II

and phase III as described by Morikawa et ai. (1989) aitd Miyamoto et al. (1989).

  Casaburi et a}. (X989) have recently observed a rapid fall in oxygen satvgration in the

mixed venovks blood (SV02) and a rise ixx carboit dioxide partiai pressvkre in the mixed

venous blood (PVC02) well in advance of the arriva} of blood produced by exercisixxg legs

at the onset of exercise. From these resvkks, they argvked that these changes mvgst be

considered when interpreting venti}atioxx and gas exchaxxge immediate}y after exercise.

However, how these changes in mixed venovgs blood related to cardiodynamic theory and

the pathways and mechanisms important in mediating the early ventilatory response

have not been clarified.

 3) AFrcRewT IMPULSms MOM WORKiNG MUSCva

  In 1932, Harrison et ai. first conciuded that exercise hyperpnea was coxxtroiled largely

by afferent information from the exercising limbs. Afterwards, Comroe and Schmidt

(1943) fovkxxd that exercise hyperpnea by stimvk}atioxx of the ventra} spinal root was

abolished after denervation or chordotomy in animals. These findings were confirmed by

vgsixxg the cross-circvk}atioxx techniqvge by Kao (1963). in addition, Morikawa et ai. (1989)

observed increment of ventilation durixxg passive movement in the health subjects, bvgt

itot in the patients of spinal cord transection (Fig.8). The experiments of Senapati

(1966), Ka}ia et al. (1972), McCloskey and Mitche}} (X972), and Tibes (X977) all support the

contentioit that stimvk}atioxx of afferent nevkral pathways rvkxxning ixx grovkp III axxd IV

fibers, which origimate in the po}ymodal receptors in the muscles (Kvgmazawa and
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 Mizvgmvgra X977; Kavgfmaxx et al. X982), caxx appreciably augment venti}atioxx. ingemann

                                                       ge(1972) have determined the venti}atioxx of the first (defined VE 1 br.) and the average

                                                        opvexktilatioxk of the breaths durirkg the first 20 s of exercise (VE 20 s) for each svgbject

                                                ig igduring voluxxtary leg and arm work. They fouxxd the VE 1 br and VE 20 s were greater

in the arm work than that in the }eg work. Ishida et al. (1994) have confirmed

                                              gesigxxificant}y higher inspiratory minvkte ventilatioxx (VI) duriitg arm movement than that

during leg movement, not on}y active}y (volvgntary) but a}so passively as shown in Fig. 9.

These resvgks svgggested that afferent stimuli from movixxg iimbs might be stroitger in

the upper thaxx }ower }imbs if ventilation increased by on}y the stimvglus through the

grovkp III axxd IV fibers. Nevertheless the numbers of receptors in the iower }imbs are

probab}y greater than that in vgpper limbs with respect to the amouxxt of mvgscle mass;

                 @it is unc}ear why VI during arm movement is higher than leg movement. It is possibie

to assume that the receptors of the arms may be more sensitive thaxx those of the legs.

However, further investigatioxx wiil be necessary to confirm this assvgmptioit.
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inc}ude prostag}andins (Stebbins et a}. X986 a, 1986b), lactate

and ATP (Tibes 1980; Mitcheli and Schmidt 1983; Stebbins and

et al. X986). Rotto axxd Kaufman (1988) reported that lactic acid

prodvgcts, such as prostag}axxdins aitd thromboxanes, are

for metabo}ic stimu}atioxx of group III and IV fibers

Fvkrthermore, iarge myelinated (grovgp I and II) fibers have

and Decandia 1990). From these resuks, further investigation

the mechaxxisms throvggh peripheral stimvk}atioxx. Adreaxxi

Kaufman (1998) have reported that grovgp III and IV

responses even at very iow levei of work ioad.

   The reviews written by Kaufman and Forster (1996) and

to be avaiiab}e to uitderstand the effect of periphera} reflex

4) STIMVWS MOM THme SwaMICIRCULAR CANAL

   Recently, stimvgiatioit of the vestibular system has

cardiovascvglar and respiratory chaxxges (Biaggioni et al. 1998;

svkpport of this concept, Jauregvki-Renavgd et al. (2001)

during rotational stimuli by using a motorized rotating chair
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to a constant rotatioxxal velocity of 600 /s on vertical axis, sustained for X mixx. They

observed that stimvk}atioxx of vertical semicircvk}ar caxxai increased breathing frequency in

norma} svgbjects but not vesibular-deficiexxt patiexxts. Moxxahaxx et al. (2002) have

determined cardiorespiratory parameters such as inspiratory time, expiratory time,

ventilation, heart rate, and mean b}ood pressure durixxg seven various conditions

(dyxxamic upright pitch, dynamic }aterai pitch, dymamic head roii, dyitamic yaw, dyitamic

yaw, dynamic chair rotatioxx, static head dowxx rotation, and static head rotation in the
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             geminute volume (Vi), tidal volume (VT) altd respiratory frequency (f) before, during altd after

chair rotation in left-turits (open eircles> and right-turits (closed eircles>. Values in the right

panel are absoiute values that were converted by iitterpolation into values for eaeh secoitd. The
                                           gepercentage ehanges in inspiratory minute volume (AtVi>, tidal volume (AVT) and respiratory

frequency (Axf) in the right-turn and ieft-tum when the average of the values at rest was

100%. The turn period is shown with share area. Time O indicates the onset of rotation. Va}ues

are expressed as mean (±SE). The symbo} *"indicate a significant difference (p<O.05) from

rest. (Miyamura et a}. 2004)
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}ateral decubitus position) in order to confirm the hypothesis that the activation of the

semicircvk}ar canals wovgld increase respiration in hvkmaxxs. They reported significant

changes in respiratory frequency and minute ventilation from base}ine during dynamic

chair rotatioxx for one mixxute. Becavgse they did xxot indicate the resvgks of respiratory

parameters obtained by the breath-by-breath techniqvge for X5 s from the start of chair

rotation, however, it is vgnclear whether this horizontal vestibu}ar activation produced

functional akerations in phase I. In other words, it is important to emphasize that

ventiiatory axxd heart rate respoxxses should be determined coxxtixxuovksly with breath-by-

breath and beat-by-beat techniques within X5 s rather than one minute total ixx order to

clarify whether a horizontai semicircvgiar caita} stimulvks is related to ventiiatory

response (phase I) at the onset of exercise. In our previous stvgdy (Miyamura et al. 2004,

                                                     ig2005), we fouxxd that inspiratory minute ventilation (VD significantly increased

immediate}y after chair rotation for very short time (X.5 s) ixx both the right- axxd }eft-

turns (Fig.11). From these resvgks, it was suggested that the activatioxx of horizonta}

semicircu}ar canals is an importaxxt factor of ventilatory response at the onset of

exercise with rotatioita} movement in heakhy subjects.

ill. CffNMAL AND maRiPmeRAL DRiVES

  Kao et a}. (1955) described that irradiation from motor cortex is not necessary

exercise hyperpnea. Since Adams et al. (Adams et al. X984a; Adams et al. 1984b) and

Brice et al. (1988) aiso svgggested that central mechanisms are xxot indispensabie for the

venti}atory response to exercise in humans, it is possib}e to assume that the phase I

response is ixxdvgced largely by afferents from the exercising muscie and this refiex

hyperpnea may increase with an increase of amount of muscles invo}ved in exercise.

                                          @Figure 12 shows the comparisoit of average AVI in phase I response between one }eg

                                               opand both legs in passive or active movement. The AVI ixxcreased significantly in these

                                        igfovkr exercise tests. Average valvkes of AVI in active and passive exercise were

significant}y higher in two legs than in one leg. Dejours et a}. (X959) determined the

vexxti}atory respoxxse to different types of repetitive movement consisting of f}exioxx-

extexxsioxx of the lower legs from vertical to horizonta} positioxx ixx the supine position

either passiveiy or voiuntarily at different freqvgencies. They found that deita expiratory

         asvo}ume (AVE) increased almost linear}y with increasing movement frequency when both
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}ower }egs were moved akernatively

                                 ophowever, deka inspiratory volume (AVI)

compared with that of oxxe ieg in both

that ventilatory response in phase I may

bvkt not proportionally to the amovgnt of

  At present, it is difficuk to clear}y

described previovksly, Adams et al. (1984)

mechanisms are xxot necessary for the

al. (1985) and Di Marco et ai. (1983)

the hypotha}amus provide the primary

Furthermore, Morikawa et a}. (1989)

the patients with spinal cord transection

vo}vgntariiy. These resvkks svkggest that the

}east during volvgntary exercise in the

  On the other hand, Fink et ai. (1963)

svgbcortical cerebral dysfuxxction common}y

dioxide aitd to hypoxia. Hida et a}. (1986)

breathing frequency, and end-tida} C02

light}y and deeply anesthetized dogs

response during passive movement was

            igone, whi}e AVE obtained during passive

rhizotomy. Furthermore, it is of interest
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xx
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Ieg$

Ieg

     x-
 between one leg and both iegs in passive and active

   (Miyamura et al. 1992)

 passiveiy or vo}vkxxtarily. As shown in Fig. 12,

    with exercising of both }egs was not dovgb}e as

 passive axxd active exercise. These resuks indicate

     ixxcrease with increasing exercise frequency,

    exercising muscle mass.

 exp}ain the mechanism for the above findings. As

     aitd Brice et ai. (1988) claimed that centra}

 exercise hyperpnea in man. However, Eldridge et

svkggested that command sigmais emanatixxg from

   drive for respiratory and circvglatory chaxxges.

observed a significant increase in ventilation wheit

      made a great effort to perform exercise

      cerebral cortex activity may be inciuded at

 awake condition in man.

      have reported that subjects with bilatera}

     had increased responsiveness both to carbon

      compared minute venti}ation, tidal volume,

    tension at the onset of passive movement ixx

withovgt rhizotomy. They observed that ventiiatory

  higher in a deep anesthesia than that in a light

    exercise was almost the same as that during

     that ixx 4 out of 5 heakhy subjects, average
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       than double that whi}e awake, thovkgh it

    is possible to speculate that the respiratory

       when awake bvkt dvgring deep anesthesia

    so that ventilation can increase considerably

    the moving iimbs. In other words, there is

      and the impulses from the central nervous

    formation covgld provide two different types

      It can be specu}ated that in an awake

    than during passive exercise may be due to

           axxd central nervous system even if

   roie. However, this assvkmption needs further
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  When exercise starts, variovgs cardiorespiratory adjustments take place for

accomodating the greatly increased metabo}ic reqvgirements. A rapid response ixx

ventilation (phase I) may be at least vgseful for preventing oxygen deficiency axxd for

increasing alveolar ventiiation, oxygen tension, aitd oxygen vgptake even if it is minimal.

But why is the increasing tidal volume and respiratory frequency elicited so quickly at

the onset of exercise? Does rapid ventilatory response piay importaxxt roles as a trigger

for surviving in exercising maxx?

  k has hitherto been reported that phase I response is observed during itot only

voluntary and passive exercise, but a}so dvgring electrically induced musc}e coxxtraction in

maxx. In addition, it was observed that ventilation in phase I is itot affected by hypoxia

and is not causa}ly liked to cardiac outpvgt. Although the mechanisms of venti}atory

response at the onset of exercise in man have extensiveiy explored by many investigators,

they have still remained obscure. At present, the causal factors of phase I are classified
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as central and peripheral neurogenic stimvglus, or as both (Fig.14). In the awake

coxxdition, abrupt ventilatory increment immediate}y after voiuntary axxd passive exercise

in man covgld be attributed to the drives from the centra} command inc}uding cortica}

and hypotha}amic activities as we}1 as some peripherai afferent informatioit through

group III axxd IV fibers and/or semicircular caxxals. However, fvgrther investigatioxxs to

clarify many vgnsolved problems with regard to phase I should be advanced in fvktvkre.
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